Curvature estimates for submanifolds with prescribed Gauss image and mean curvature

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curvature Estimates for Submanifolds with Prescribed Gauss Image and Mean Curvature

We study that the n−graphs defining by smooth map f : Ω ⊂ R n → R m , m ≥ 2, in R m+n of the prescribed mean curvature and the Gauss image. We derive the interior curvature estimates sup DR(x)

متن کامل

Mean Curvature Flow with Convex Gauss Image

We study the mean curvature flow of complete space-like submanifolds in pseudo-Euclidean space with bounded Gauss image, as well as that of complete submanifolds in Euclidean space with convex Gauss image. By using the confinable property of the Gauss image under the mean curvature flow we prove the long time existence results in both cases. We also study the asymptotic behavior of these soluti...

متن کامل

Eigenvalue estimates for submanifolds with locally bounded mean curvature

We give lower bounds estimates for the first Dirichilet eigenvalues for domains Ω in submanifolds M ⊂ N with locally bounded mean curvature. These lower bounds depend on the local injectivity radius, local upper bound for sectional curvature of N and local bound for the mean cuvature of M . For sumanifolds with bounded mean curvature of Hadamard manifolds these lower bounds depends only on the ...

متن کامل

Bayesian algorithms for PET image reconstruction with mean curvature and Gauss curvature diffusion regularizations

The basic mathematical problem behind PET is an inverse problem. Due to the inherent ill-posedness of this inverse problem, the reconstructed images will have noise and edge artifacts. A roughness penalty is often imposed on the solution to control noise and stabilize the solution, but the difficulty is to avoid the smoothing of edges. In this paper, we propose two new types of Bayesian one-ste...

متن کامل

The Mean Curvature Flow for Isoparametric Submanifolds

A submanifold in space forms is isoparametric if the normal bundle is flat and principal curvatures along any parallel normal fields are constant. We study the mean curvature flow with initial data an isoparametric submanifold in Euclidean space and sphere. We show that the mean curvature flow preserves the isoparametric condition, develops singularities in finite time, and converges in finite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2009

ISSN: 0944-2669,1432-0835

DOI: 10.1007/s00526-009-0268-8